
Electronic version of an article published as
Discrete Mathematics, Algorithms and Applications Vol. 6, No. 2 (2014) 1450022 (16 pages),
DOI: 10.1142/S1793830914500220 (c) 2014 Copyright World Scientific Publishing Company.

Priority-based task reassignments in hierarchical 2D

mesh-connected systems using tableaux

Dohan Kim∗

A.I. Research Co., 2537-1 Kyungwon Plaza 201, Sinheung-dong, Sujeong-gu,

Seongnam-si, Kyunggi-do, 461-811, South Korea

Abstract

Task reassignments in 2D mesh-connected systems (2D-MSs) have been re-
searched for several decades. We propose a hierarchical 2D mesh-connected sys-
tem (2D-HMS) in order to exploit the regular nature of a 2D-MS. In our approach
priority-based task assignments and reassignments in a 2D-HMS are represented by
tableaux and their algorithms. We show how task relocations for a priority-based
task reassignment in a 2D-HMS are reduced to a jeu de taquin slide.

Keywords: Task relocation; Task reassignment; Young tableau; 2D mesh; Jeu de
taquin

1 Introduction

A distributed system is a collection of processing nodes connected by an interconnection
network [21, 31]. Among various interconnection networks for distributed systems, a
two-dimensional (2D) mesh has received extensive study due to its simplicity, efficiency,
and structural regularity [6,26,35,36]. Some data structures, such as matrices and ar-
rays, naturally fit into a 2D mesh-connected system (2D-MS) [26]. Since tasks are often
assigned to a submesh in a 2D-MS, continuous submesh allocations and deallocations
of different sizes may cause fragmentation [35, 36] in a 2D-MS. Task relocation is an
approach to decrease fragmentation by reassigning a running task to an idle processing
node, which involves capturing and transferring the state of the running task to the
idle node in a 2D-MS [36].

Although the construction of a 2D-MS using heterogeneous nodes is considered
in [6], most of the traditional approaches [1,24,26,35,36] are based on the assumptions
that nodes in a 2D-MS are homogeneous. Further, the topology of the assigned tasks
on a 2D-MS is restricted (e.g., rectangular or square-mesh shape) and priority-based
task assignments and reassignments have not often been considered. Therefore, there
is a lack of systematic mechanisms of task relocations in a heterogeneous 2D-MS.

∗E-mail: dkim@airesearch.kr

1

For decades, a wide variety of ways to tackle task assignment and reassignment
problems in a distributed system have been researched, such as graph-theoretic [3, 15,
20, 25, 34], mathematical programming [8], and heuristics [10]. One of the common
methods to represent and solve a task assignment problem is a graph-theoretic method
using a graph-matching algorithm [15, 25, 34]. To complement the graph-theoretic
method, our previous work [16] presented a Young tableaux [13, 22, 29, 37] approach
to representing task assignments.

We use tableaux and their algorithms for priority-based task reassignments in a
hierarchical 2D-MS, where a hierarchical 2D-MS (2D-HMS) is defined as a 2D-MS
consisting of heterogeneous nodes whose priorities (or execution rates) of rows and
columns are sorted in descending order. In this paper we convert a 2D-HMS into a
Young diagram [22,29] and represent a task assignment of a 2D-HMS using a tableau.
Our greedy task relocation policy is based on a 2D-HMS in which task relocations are
performed systematically by using tableau algorithms.

The remainder of this paper is organized as follows. We provide an introduction
to tableaux and their algorithms in Section 2. Section 3 presents a representation of
a 2D-HMS using a Young diagram. In this section we define a hierarchical 2D mesh
tableau in order to represent a priority-based task assignment and its reassignments
in a 2D-HMS. Section 4 shows how task relocations in a hierarchical 2D mesh tableau
under the greedy task relocation policy are reduced to a jeu de taquin slide, and how
they are applied to a 2D-HMS. Finally, we conclude in Section 5.

2 Preliminaries

This section provides necessary definitions and terminology used in this paper. Defini-
tions and results in this section are found in [1, 7, 11–14,16,22,24,27–30,33,36,37].

A heterogeneous system N is a set of heterogeneous nodes N = {n1, n2, . . . , nm}
whose communications are described by a network topology. By a node we mean a
processor (or agent) that carries out a task. A heterogeneous system N is said to be
consistent if node na ∈ N executes a task d times faster than node nb ∈ N , then
it executes all other tasks d times faster than node nb. In a consistent system the
computation cost of task vs on node nt is defined by ω(vs, nt) = r(vs)/e(nt), where
r(vs) is the computation (or resource) requirement of task vs, and e(nt) is the execution
rate of node nt.

Let T = {t1, t2, . . . , ta} be a set of a tasks with or without precedence constraints
and N = {n1, n2, . . . , nb} be a set of b nodes. Let A : T → N be a task assignment
function between T and N . Let ten(A) denote the total execution time of node n for
the task assignment A and let tin(A) denote the total idle time of node n for the task
assignment A. The turnaround time of node n for the task assignment A is the total
time spent in the node n for the task assignment A. Let tn(A) := tin(A) + ten(A) and
t(A) := maxn tn(A). We call t(A) the task turnaround time of the task assignment A.

A 2D mesh-connected system (or 2D-MS for short) is a set of m×n nodes structured
as a rectangular grid of height m and width n. Each node is addressed by its coordinate

2

(i, j) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. An internal node (x, y), where 1 < x < m and
1 < y < n, is directly connected to its four adjacent nodes (x− 1, y), (x+ 1, y), (x, y−
1), (x, y + 1). A node in the four corners has two adjacent nodes, while a node in
the remaining boundary has three adjacent nodes, respectively (see Figure 1(d) in
Section 3). An m′×n′ submesh of an m×n 2D-MS is a grid of nodes belonging to the
2D-MS with height m′ and width n′ such that 1 ≤ m′ ≤ m and 1 ≤ n′ ≤ n. A submesh
is called free if every node in the submesh is idle. We assume that each incoming job
(i.e., a set of tasks) requests a submesh of a certain size and that every node in the
allocated submesh cannot be used for an incoming job until it is deallocated. We say
that internal fragmentation occurs if more nodes in a 2D-MS are allocated to a job
than required. We say that external fragmentation occurs if a large enough submesh
cannot be found for an incoming job although there are a sufficient number of nodes
in a 2D-MS are available.

A partition of n is defined as a sequence λ = (λ1, λ2, . . . , λi), where the λk are
weakly decreasing and

∑i
k=1 λk = n. If λ is a partition of n, then we write λ ` n.

Let λ = (λ1, λ2, . . . , λi) ` n. A Young diagram (or Ferrers diagram) of shape λ is a
left-justified, finite collection of cells, with row j containing λj cells for 1 ≤ j ≤ i. Each
cell in a Young diagram in row i and column j has a coordinate (i, j), as in a 2D-MS.

Let λ be a partition. An inner corner of the Young diagram of shape λ is a cell
(i, j) ∈ λ whose removal leaves the Young diagram of a partition.

Let λ ` n. A tableau t of shape λ is a Young diagram of shape λ filled with a set of
elements, often positive integers. An entry of a cell having a coordinate (i, j) in tableau
t is denoted by ti,j .

A Young tableau T of shape λ is a tableau of shape λ whose entries are the numbers
from 1 to n, each occurring once.

A standard Young tableau is a Young tableau whose entries are strictly increasing
in rows and columns. Let λ ` n.

A partial tableau p of shape λ is a tableau whose entries are strictly increasing
in rows and columns. Note that a partial tableau is the standard Young tableau if
the entries of p are exactly {1, 2, . . . , n}. For instance, the following t1 is a standard
tableau, but t2 is not.

t1 =
1 3 5
2 4
6

, t2 =
1 3 5
4 2
6

.

The number of standard Young tableaux of a given shape λ is obtained from the
hook formula.

If ν = (i, j) is a cell in the Young diagram of shape λ, then the hook of ν, denoted
by Hν , is the set of all cells directly to the right of ν or directly below ν including ν
itself, that is

Hν = Hi,j = {(i, j′) : j′ ≥ j} ∪ {(i′, j) : i′ ≥ i}.

The hook length of ν = (i, j), denoted by hi,j , is the number of cells in its hook,
i.e., hi,j = |Hi,j |.

3

The number of standard Young tableaux of a given shape λ ` n is obtained by the
following theorem.

Theorem 2.1 ([12]). If λ ` n, then the number fλ of standard Young tableaux of
shape λ is

fλ =
n!∏

(i,j)∈λ hi,j
.

For instance, labeling each cell with its hook length for the Young diagram of shape
(3, 2, 1) and (4, 4, 4, 4) are given by

5 3 1
3 1
1

,

7 6 5 4
6 5 4 3
5 4 3 2
4 3 2 1

.

If the shape is λ = (3, 2, 1), then f (3,2,1) = 6!/(5 · 32 · 13) = 16. If the shape is
λ = (4, 4, 4, 4), then f (4,4,4,4) = 16!/(7 · 62 · 53 · 44 · 33 · 22 · 1) = 24024.

Let µ = (µ1, µ2, . . . , µi) and λ = (λ1, λ2, . . . , λj) be partitions with µ ⊆ λ (i.e.,
i ≤ j and µk ≤ λk for 1 ≤ k ≤ i). Then, a skew shape of λ/µ is the set of cells
λ/µ = {c : c ∈ λ and c /∈ µ}. A skew shape of λ/µ is normal if µ = ∅. A tableau of
skew shape λ/µ is called a skew tableau of shape λ/µ. A partial skew tableau of shape
λ/µ (or a partial tableau of skew shape λ/µ) is a skew tableau of shape λ/µ whose
entries are strictly increasing in rows and columns.

A partial skew tableau is called the standard skew tableau if its entries are precisely
{1, 2, . . . , n}. For instance, consider skew tableaux of shape λ/µ = (4, 3, 3, 2)/(2, 2)
given by

t1 =

1 7
3

2 4 5
6 9

, t2 =

1 7
5

2 4 3
6 9

.

We see that t1 is a partial skew tableau, but t2 is not.
A group (G, ·) is a nonempty set G, closed under a binary operation · , such that

the following axioms are satisfied: (i) (a · b) · c = a · (b · c) for all a, b, c ∈ G, (ii) there
is an identity element e ∈ G such that for all x ∈ G, e · x = x · e = x, (iii) for each
element a ∈ G, there is an element a−1 ∈ G such that a · a−1 = a−1 · a = e.

The group of all bijections In → In, whose binary operation is function composition,
is called the symmetric group on n letters and denoted Sn. Since Sn is the group of
all permutations of a set In = {1, 2, . . . , n}, the order of Sn, i.e., |Sn|, is n!.

Let i1, i2, . . . , in be distinct elements of In = {1, 2, . . . , n}. Then, [i1 i2 · · · in] ∈ Sn

denotes the permutation that maps 1 7→ i1, 2 7→ i2, . . . , n 7→ in.
Suppose x < y < z. A Knuth transformation of a permutation π ∈ Sn is a

transformation of π ∈ Sn into another permutation τ ∈ Sn that has one of the following
forms:

4

(1) π = [x1 · · · y x z · · · xn] ∈ Sn =⇒ τ = [x1 · · · y z x · · · xn] ∈ Sn,

(2) π = [x1 · · · y z x · · · xn] ∈ Sn =⇒ τ = [x1 · · · y x z · · · xn] ∈ Sn,

(3) π = [x1 · · · x z y · · · xn] ∈ Sn =⇒ τ = [x1 · · · z x y · · · xn] ∈ Sn,

(4) π = [x1 · · · z x y · · · xn] ∈ Sn =⇒ τ = [x1 · · · x z y · · · xn] ∈ Sn.

Two permutations π, τ ∈ Sn are called Knuth-equivalent if one of them can be obtained
from the other by a sequence of Knuth transformations, denoted π ∼=K τ .

For instance, we see that [2 1 3] ∈ S3 and [2 3 1] ∈ S3 are Knuth-equivalent by the
above (1) and (2), written [2 1 3] ∼=K [2 3 1]. Similarly, [1 3 2] ∈ S3 and [3 1 2] ∈ S3 are
Knuth-equivalent by the above (3) and (4), written [1 3 2] ∼=K [3 1 2].

Let t be a tableau. The reading word or row word of t, denoted r(t), is the permu-
tation of entries of t obtained by concatenating the rows of t from bottom to top, i.e.,
r(t) = RkRk−1 . . . R1, where R1, . . . , Rk are the rows of t.

Algorithm 1: A forward jeu de taquin slide [22,23]

Input: A partial tableau P of skew shape λ/µ; an inner corner of µ
Output: A partial tableau P ′

begin
Pick x to be an inner corner of µ;
while x is not an inner corner of λ do

if x = (i, j) then
Let x′ be the cell of min{Pi+1,j , Pi,j+1};
(If only one of Pi+1,j and Pi,j+1 exists, then choose that value as a
minimum.)

end
Slide Px′ into cell x and set x := x′;

end
return The resulting partial tableau P ′;

end

The jeu de taquin of Scützenberger [23,29] consists of a set of rules for transforming
partial tableaux, while some properties of partial tableaux are preserved during trans-
formations. A forward jeu de taquin slide is described in Algorithm 1. Note that the
resulting tableau of a forward jeu de taquin slide is still a partial tableau. We say that
partial tableaux P and P ′ are jeu de taquin equivalent, written P ∼=jdt P

′, if P ′ can be
obtained from P by some sequence of jeu de taquin slides, or vice versa. (The reader is
encouraged to verify that ∼=jdt is an equivalence relation on the set of partial tableaux.)

Lemma 2.1 ([29]). Each jeu de taquin slide converts the reading word of a standard
skew tableau into a Knuth-equivalent one.

Theorem 2.2 ([22, 23]). The jeu de taquin equivalence class of a given partial skew
tableau P contains exactly one partial tableau of normal shape.

5

Theorem 2.3 ([23, 29]). Let P and P ′ be standard skew tableaux. They are jeu
de taquin equivalent, i.e., P ∼=jdt P

′, if and only if their reading words are Knuth-
equivalent, i.e., r(P) ∼=K r(P ′).

3 Representations of a 2D-HMS

A graph-theoretic approach to Young diagrams or tableaux has already been researched
in [19]. It focuses on graphs having the shape of a Young diagram or a tableau, while
this paper focuses on converting a 2D-MS into a Young diagram. This section presents
how a 2D-HMS is represented by a Young diagram with additional properties. In this
section we define a hierarchical 2D mesh tableau in order to represent a task assignment
and its reassignments in a 2D-HMS.

(a) (b) (c) (d)

1 2 4 7

3 5 8 11

6 9 12 14

10 13 15 16

1 2 4 7
3 5 8 11

6 9 12 14

10 13 15 16

(1,1) (1,4)

(4,1) (4,4)

Figure 1: The conversion of each 2D-MS (or its variant) into a Young diagram or a
tableau.

Figure 1(a) shows our approach to convert a 2D-MS into a Young diagram in a
compact manner. Similarly to Figure 1(a), Figure 1(b) and (c) convert the variants
of a 2D-MS into their corresponding Young diagrams. Meanwhile, each label (except
labels involving coordinates (1, 1), (1, 4), (4, 1), and (4, 4)) in Figure 1(d) denotes a
task ID in order to represent a task assignment in a 2D-MS.

To exploit the regular nature of a 2D mesh topology, we consider a hierarchical 2D
mesh diagram of canonical shape, where the rows and columns of heterogeneous nodes
are sorted in descending order by their priorities (or execution rates). We first define a
2D-HMS consisting of m × n heterogeneous nodes. Then, we define a hierarchical 2D
mesh diagram to represent a 2D-HMS.

Definition 3.1. A hierarchical 2D mesh-connected system (2D-HMS) of m×n hetero-
geneous nodes is a heterogeneous 2D-MS with the following partial order

N(i− 1, j) ≺p N(i, j), N(i, j − 1) ≺p N(i, j), 1 < i ≤ m, 1 < j ≤ n,

6

where N(a, b) ≺p N(c, d) means that a node addressed by (a, b) has a higher priority
(or execution rate) than a node addressed by (c, d).

Definition 3.2. A hierarchical 2D mesh diagram of canonical shape λ = (λ1, λ2, . . . , λk) `
n for λ1 = λ2 = · · · = λk is a Young diagram of shape λ ` n, where each cell (i, j)
represents each node (i, j) in a 2D-HMS. Therefore, it has the following partial order

N(i− 1, j) ≺p N(i, j), N(i, j − 1) ≺p N(i, j), 1 < i ≤ k, 1 < j ≤ λ1,
where N(a, b) ≺p N(c, d) means that a node represented by cell (a, b) has a higher
priority (or execution rate) than a node represented by cell (c, d).

We say “a node represented by cell (a, b)” in Definition 3.2 and “a node addressed by
(a, b)” interchangeably for a hierarchical 2D mesh diagram. The following proposition
involves in a counting aspect of organizing a hierarchical 2D mesh diagram of canonical
shape λ ` n using n heterogeneous nodes in a distributed system.

Proposition 3.1. Let λ = (λ1, λ2, . . . , λk) ` n for λ1 = λ2 = · · · = λk and let
N = {1, 2, . . . , n} be a set of k × λ1 heterogeneous nodes having priorities1 represented
by node IDs from 1 to n. A total order relation < is defined naturally on N such that
for any two nodes u ∈ N and v ∈ N , u < v implies that node u has a higher priority
(or execution rate) than node v. Then, the number of ways to organize a hierarchical
2D mesh diagram of shape λ ` n by arranging n nodes in N is fλ (i.e., the number of
standard Young tableaux of shape λ).

Proof. It immediately follows from the definition of a standard tableau and Defini-
tion 3.2.

We next define a hierarchical 2D mesh tableau whose main usage is to represent a
priority-based task assignment and its reassignments in a 2D-HMS. A priority-based
task assignment and its reassignments in a 2D-HMS are discussed in the next section.

Definition 3.3. A hierarchical 2D mesh tableau of shape λ ` n is a tableau of shape
λ whose underlying Young diagram is a hierarchical 2D mesh diagram of canonical
shape λ ` n. It is denoted by (HMTi,j) of shape λ or λ-(HMTi,j) for short. Entries
of λ-(HMTi,j) denote task IDs from the set {1, 2, . . . ,m} for m ≤ n. The empty entry
of a cell is allowed in λ-(HMTi,j), while all non-empty entries along with their cells
must form a tableau of normal or skew shape, called a maximally embedded tableau of
λ-(HMTi,j).

Definition 3.4. Let λ-(HMTi,j) be a hierarchical 2D mesh tableau of shape λ ` n. If
the maximally embedded tableau of λ-(HMTi,j) is a tableau of normal shape, we say
that λ-(HMTi,j) is of normal shape. Meanwhile, if the maximally embedded tableau
of λ-(HMTi,j) is a tableau of skew shape, we say that λ-(HMTi,j) is of skew shape.
If the maximally embedded tableau of λ-(HMTi,j) is a partial tableau (i.e., a tableau
whose entries are strictly increasing in rows and columns), we say that λ-(HMTi,j) is
standard. Otherwise, we say that λ-(HMTi,j) is generalized.

1In some priority schemes [18, 28] a higher number indicates a higher priority. Throughout this
paper it is assumed that a lower number indicates a higher priority.

7

4 Priority-based task reassignments in a 2D-HMS

Let Tm = {1, 2, . . . ,m} be a set of m tasks having priorities represented by task IDs
from 1 to m, where a lower task ID indicates a higher priority. A total order relation
≺t is defined on Tm as follows. t1 ≺t t2 for any two tasks t1 ∈ Tm and t2 ∈ Tm means
that t1 has a higher priority than t2. Let Rn be a hierarchical 2D-MS (2D-HMS)
consisting of n (n ≥ m) heterogeneous nodes whose priorities (or execution rates) of
rows and columns are sorted in descending order. Let A : Tm → Rn be an injective
task assignment function between Tm and Rn whose constraints are defined as follows:

1. Priorities of the assigned tasks on nodes strictly decrease in rows and columns,
i.e., t1 ≺t t2 whenever A(t1) ≺p A(t2) for any two tasks t1 ∈ Tm and t2 ∈ Tm.

2. Nodes of A(Tm) in Rn is left-justified, where the row sizes of A(Tm) are weakly
decreasing.

The first constraint ensures that a node with a higher priority executes a task with
a higher priority. The second constraint ensures that if one node is idle and the other
node is busy for two adjacent nodes in a 2D-HMS, the node with the lower priority is
chosen to be idle. We say that a task assignment or reassignment A in a 2D-HMS is
priority-based if it satisfies the above constraints in a 2D-HMS.

The priority-based task reassignment problem in a 2D-HMS is defined as follows:
We are given an initial task assignment A = A0 along with a task completion sequence
(bi)

m
i=1 provided in run-time, where bi ∈ Tm for 1 ≤ i ≤ m. Find a priority-based task

(re)assignment sequence (Ak)
m−1
k=0 .

The constraints and assumptions that we have made are:

1. Both tasks and nodes are heterogeneous.

2. Each node can process at most one task at a time.

3. Each priority-based task reassignment is achieved by an iterative sequence of task
relocations, where each task relocation is allowed between two adjacent nodes in
a 2D-HMS if one node is in idle state and the other node is in busy state.

4. Two task relocations do not occur simultaneously in a 2D-HMS.

5. The number of tasks are less than or equal to the number of the available nodes
in a 2D-HMS.

Recall that the underlying Young diagram of λ-(HMTi,j) is a hierarchical 2D mesh
diagram of canonical shape (see Definition 3.3). Therefore, each cell of λ-(HMTi,j)
represents each node in a 2D-HMS. By assigning each entry (i.e., task) in a standard
λ-(HMTi,j) of normal shape to its underlying cell representing a node in a 2D-HMS,
we see that a standard λ-(HMTi,j) of normal shape represents a priority-based task
assignment in a 2D-HMS. We define a descent pair of a generalized λ-(HMTi,j), which
does not allow a generalized λ-(HMTi,j) to represent a priority-based task assignment
in a 2D-HMS.

8

Definition 4.1. Let λ-(HMTi,j) be a generalized hierarchical 2D mesh tableau. If
HMTi,j ≺t HMTi−1,j (respectively, HMTi,j ≺t HMTi,j−1), then, {(i − 1, j), (i, j)}
(respectively, {(i, j − 1), (i, j)}) is called a descent pair of a generalized λ-(HMTi,j).

If a descent pair occurs in a task assignment represented by a generalized λ-
(HMTi,j), it is not a priority-based task assignment. In this paper λ-(HMTi,j) is
referred to as a standard λ-(HMTi,j) of normal shape unless otherwise stated.

Now, consider a priority-based task assignment in Figure 2(a) represented by (HMTi,j)
of shape λ = (3, 3, 3) ` n for n = 9.

(a) A0 =
1 2 4
3 5 7
6 8 9

, (b)
• 2 4
3 5 7
6 8 9

⇒
2 • 4
3 5 7
6 8 9

⇒
2 4 •
3 5 7
6 8 9

⇒
2 4 7
3 5 •
6 8 9

⇒
2 4 7
3 5 9
6 8 •

.

(c) A0 =
1 2 4
3 5 7
6 8 9

, A1 =
2 4 7
3 5 9
6 8

, A2 =
2 4 7
5 8 9
6

, A3 =
4 7 9
5 8
6

, A4 =
4 7 9
6 8 ,

A5 =
4 7 9
6 , A6 =

6 7 9
, A7 =

7 9
, A8 =

9
.

Figure 2: A sequence of task reassignments for a task completion sequence
(1, 3, 2, 5, 8, 4, 6, 7, 9).

If task 1 in Figure 2(a) is completed first, the node addressed by (1, 1) becomes idle.
We mark the cell (1, 1) as • to show that the node addressed by (1, 1) is now in the idle
state. Once a node is in the idle state, it seeks the right and below node to perform task
relocation. Recall that our task relocation is only allowed between two adjacent nodes
if one is in the idle state and the other is in the busy state. If a node is in the idle state,
it does not check the left and above node to perform task relocation. It is because the
underlying 2D mesh Young diagram of λ-(HMTi,j) is hierarchical, it is not an optimal
choice if a task is to run on a node with the lower execution rate. Therefore, a node
in the idle state always seeks both the right and below node in order to compare task
priorities and to relocate a task. We see that task HMT1,2 has a higher priority than
task HMT2,1, i.e., 2 ≺t 3. Therefore, task relocation involves the node addressed by
(1, 1) and the node addressed by (1, 2). Now, task 2 has been relocated and the node
addressed by (1, 2) becomes idle. If a node becomes idle, the choice for task relocation
between the right and below node is always greedy [9], allowing the task with the
higher priority to occupy the idle node (see Figure 2(b)). This process continues until
no task relocation is possible, which means that the right and below node of • are
both idle or both not available. The final state of Figure 2(b) is the task reassignment
A1 for the completion of task 1. Given an initial task assignment A0 in Figure 2(a),
Figure 2(c) shows the task (re)assignment sequence (Ak)

m−1
k=0 for m = 9 corresponding

to the task completion sequence (1, 3, 2, 5, 8, 4, 6, 7, 9). Algorithm 2 describes the

9

Algorithm 2: Task reassignments: λ-(HMTi,j) of normal shape

Input: An initial task assignment A0 represented by λ-(HMTi,j) of normal
shape; a task completion sequence (b1, b2, . . . , bm), where m ≥ 2,
provided in runtime

Output: A task (re)assignment sequence (Ak)
m−1
k=0

begin

Set λ-(HMT
(1)
i,j) :=λ-(HMTi,j);

for k ← 1 to m− 1 do

Let t be the maximally embedded tableau of λ-(HMT
(k)
i,j) and µ be the

shape of t; Wait for a completion of task bk in λ-(HMT
(k)
i,j); If task bk is

completed, then the underlying cell of task bk in λ-(HMT
(k)
i,j) becomes

vacated; Set x as the corresponding cell in λ-(HMT
(k)
i,j);

while x is not an inner corner of µ do
if x = (i, j) then

Let x′ be the cell of min{HMT
(k)
i+1,j , HMT

(k)
i,j+1}. (If only one

non-idle cell exists in (i+ 1, j) and (i, j+ 1), then choose that cell.)
end
Relocate the task on cell x′ into cell x and set x := x′;

end

Set Ak:=λ-(HMT
(k)
i,j), where λ-(HMT

(k)
i,j) is of normal shape;

Set λ-(HMT
(k+1)
i,j):=λ-(HMT

(k)
i,j);

end

return The task (re)assignment sequence (Ak)
m−1
k=0 ;

end

procedure in Figure 2. Task reassignments take place in Algorithm 2 when a task
completion sequence is provided in run time. It turns out that the iterative greedy
task relocation mechanism in Algorithm 2 corresponds to a forward jeu de taquin
slide discussed in Algorithm 1, except that task relocation starts with the cell that is
indicated by the task completion sequence. Note that each task assignment in a task
(re)assignment sequence (Ak)

m−1
k=0 in Algorithm 2 is a priority-based task assignment.

We see that each task (re)assignment in (Ak)
m−1
k=0 in Algorithm 2 is represented by a

hierarchical 2D mesh tableau of normal shape, where task IDs are increasing in rows
and columns on the underlying hierarchical 2D mesh diagram.

Thus far, we have examined the case where an initial task assignment is repre-
sented by λ-(HMTi,j) of normal shape. We now consider the case where an initial task
assignment is represented by λ-(HMTi,j) of skew shape.

Consider a top-left corner of a hierarchical 2D mesh tableau t1 or t2 in Figure 3,
where the node with the highest priority is idle. Therefore, it is a natural choice to

10

t1=

1 6
4

2 3 5
7 8

, t2=

1 6
3 4

2 5
7 8

, t3=

1 6
4

2 3 5
7 8

, t4=

1 6
3 4

2 5
7 8

, t5=

1 3 4 6
2 8
5
7

.

Figure 3: Task reassignments by using forward jeu de taquin slides.

Algorithm 3: Task reassignments: λ-(HMTi,j) of skew shape

Input: An initial task assignment A0 represented by λ-(HMTi,j) of skew shape
Output: A task (re)assignment sequence (Ak)

m
k=0

begin
If β is a partition of a positive integer n for the maximally embedded tableau
of λ-(HMTi,j) of skew shape α/β, then set m as the value of n; Set

λ-(HMT
(1)
i,j) :=λ-(HMTi,j); Set k := 1;

while the maximally embedded tableau of λ-(HMT
(k)
i,j) is not of normal shape

do

If the maximally embedded tableau of λ-(HMT
(k)
i,j) is of (skew) shape

µ/ν, pick x to be an inner corner of ν;
while x is not an inner corner of µ do

if x = (i, j) then

Let x′ be the cell of min{HMT
(k)
i+1,j , HMT

(k)
i,j+1}. (If only one

non-idle cell exists in (i+ 1, j) and (i, j+ 1), then choose that cell.)
end
Relocate the task on cell x′ into cell x and set x := x′;

end

Set Ak:=λ-(HMT
(k)
i,j); Set λ-(HMT

(k+1)
i,j):=λ-(HMT

(k)
i,j); k := k + 1;

end
return The task (re)assignment sequence (Ak)

m
k=0, where Am is the task

reassignment represented by λ-(HMT
(m)
i,j) of normal shape;

end

relocate a task from a node with the lower execution rate to a node with the higher
execution rate if task relocation is necessary. Algorithm 3 describes the procedure,
where an initial task assignment represented by a hierarchical 2D mesh tableau of skew
shape is converted into the task reassignment represented by a hierarchical 2D mesh
tableau of normal shape. As shown in Figure 3, t3 is the maximally embedded tableau
of t1, and t4 is the maximally embedded tableau of t2, respectively. By performing task
relocations discussed in Algorithm 3 iteratively, the task reassignment t5 is obtained
from the task assignment t1 in Figure 3 by Algorithm 3. Similarly, the task reassignment
t5 is also obtained from the task assignment t2 in Figure 3. If t2 represents an initial
task assignment A0, then t5 corresponds to the task reassignment A3 in Algorithm 3.

11

An initial choice of task relocation for A1 must target for either the cell (1, 2) or the
cell (2, 1) in t2. Note that the task (re)assignment sequence (A0, A1, A2, A3) is not
uniquely determined, depending on the choice of an initial task relocation. However,
A3 is uniquely determined by Theorem 2.2 because the greedy-based task relocations
on λ-(HMTi,j) follow the forward jeu de taquin slide rules. Unlike a task reassignment
represented by λ-(HMTi,j) of normal shape, a task reassignment represented by λ-
(HMTi,j) of skew shape do not always satisfy the constraints of a priority-based task
assignment. For instance, non-idle nodes of A0, A1, and A2 are not left-justified, which
implies that the node with the higher execution rate is idle for some pairs of adjacent
nodes in a 2D-HMS. However, the resulting task reassignment A3 is a priority-based
task assignment in a 2D-HMS. We next define an equivalence class of task reassignments
up to task relocations under the greedy task relocation policy.

Definition 4.2. Two task assignments t1 and t2, represented by a hierarchical 2D
mesh tableau λ-(HMT1

i,j) of skew shape and λ-(HMT2
i,j) of skew shape, respectively,

are called task reassignment equivalent up to task relocations (under the greedy task
relocation policy described in Algorithm 3), denoted by t1 ∼=t t2, if they have the same
resulting task reassignment represented by the same λ-(HMTi,j) of normal shape.

Proposition 4.1. Let λ-(HMT1
i,j) and λ-(HMT2

i,j) be hierarchical 2D mesh tableaux of
skew shape whose maximally embedded tableaux are both standard skew tableaux. If two
task assignments t1 and t2, represented by λ-(HMT1

i,j) and λ-(HMT2
i,j), respectively,

are task reassignment equivalent, then the reading words of their maximally embedded
tableaux of λ-(HMT1

i,j) and λ-(HMT2
i,j) are Knuth-equivalent.

Proof. Let P be the maximally embedded tableau of λ-(HMT1
i,j) for the task assignment

t1, and Q be the maximally embedded tableau of λ-(HMT2
i,j) for the task assignment

t2. Since t1 ∼=t t2 by hypothesis, t1 and t2 have the same resulting task reassignment
represented by the same λ-(HMTi,j) of normal shape by Definition 4.2. Each task
relocation under the greedy task relocation policy described in Algorithm 3 follows
the forward jeu de taquin slide rules described in Algorithm 1. Thus, P ∼=jdt Q by
Theorem 2.2. Since P and Q are both standard skew tableaux by hypothesis satisfying
P ∼=jdt Q, we conclude that the reading words of P and Q are Knuth-equivalent by
Theorem 2.3.

For instance, the reading word of t3 (i.e., the maximally embedded tableau of t1)
in Figure 3 is π = [7 8 2 3 5 4 1 6] ∈ S8. Similarly, the reading word of t4 (i.e., the
maximally embedded tableau of t2) in Figure 3 is τ = [7 8 2 5 3 4 1 6] ∈ S8. We leave it
to the reader to verify that π and τ are Knuth-equivalent.

We say that an idle node in a 2D-HMS represented by λ-(HMTi,j) is locally frag-
mented if it is surrounded by busy nodes, where a busy node in a 2D-HMS corresponds
to a cell having an non-empty entry in λ-(HMTi,j). If we do not apply a task reassign-
ment at all, a locally fragmented node can be generated in a 2D-HMS when an internal
node completes its task and becomes idle while other nodes are busy. It is easy to see
that locally fragmented nodes increase the chance of occurring external fragmentation.

12

For instance, four locally fragmented nodes can serve only four 1× 1 meshes of tasks,
but cannot serve one 2 × 2 mesh of tasks or two 1 × 2 meshes of tasks. As discussed
in [36], task relocation is an approach for alleviating the fragmentation problem in a
2D-MS. In our approach we use task relocations to avoid the generation of locally frag-
mented nodes while taking the priorities of tasks and nodes into account. The following
proposition says that our priority-based task reassignment procedure does not generate
any locally fragmented node in a 2D-HMS.

Proposition 4.2. Let A0 be an initial task assignment in a 2D-HMS represented by
λ-(HMTi,j) of normal shape and let (b1, b2, . . . , bm) for m ≥ 2 be a task completion
sequence in Algorithm 2. Each task reassignment Ak (k = 1, . . . ,m−1) in Algorithm 2
does not generate any locally fragmented node in the 2D-HMS.

Proof. For each k = 0, . . . ,m − 1, let tk be the maximally embedded tableau of λ-
(HMTk

i,j) representing task (re)assignment Ak in a 2D-HMS and let ik be the inner
corner in tk that becomes vacated by Ak+1 by Algorithm 2. We see that tk is a tableau
of normal shape by Algorithm 2. By the definition of an inner corner, each inner corner
in tk is adjacent to a cell with the empty entry (i.e., an idle node in the 2D-HMS) in
λ-(HMTk

i,j). Since the node addressed by ik does not become locally fragmented by
Ak+1, we see that each task reassignment Ak (k = 1, . . . ,m − 1) in Algorithm 2 does
not generate any locally fragmented node in the 2D-HMS.

As a simple example of Algorithm 2, consider a sequential task assignment in a
2D-HMS for priority-based task reassignments, which is described as follows. A set
of m tasks Tm = {1, 2, . . . ,m} with the precedence relationship 1 → 2 → · · · → m
are to be assigned to a set of m heterogeneous nodes bijectively in a 2D-HMS of
n heterogeneous nodes (m ≤ n) and executed sequentially without gaps. We assume
that a 2D-HMS is consistent for a sequential task assignment. Tasks are heterogeneous,
and their priorities are assigned by their computation requirements in which the higher
task priority indicates the larger computation requirement. If a descent pair occurs
in a sequential task assignment represented by a generalized λ-(HMTi,j), there is a
node with a higher priority than the other node but it executes a task with a lower
priority than the other node. Therefore, it always has the better task assignment
in terms of task turnaround time. For instance, swapping tasks on a descent pair
reduces task turnaround time for a sequential task assignment in a consistent 2D-
HMS. Now, consider priority-based task reassignments in Algorithm 2 for a priority-
based sequential task assignment of m tasks in a 2D-HMS, in which the task completion
sequence is simply (1, 2, . . . ,m). If we assume that every 2D-HMS is consistent in which
task relocations are cost-free, we have Proposition 4.3.

Proposition 4.3. Let A0 be a priority-based sequential task assignment for m (m ≥
2) tasks represented by λ-(HMTi,j) of normal shape. Let T1 be the task turnaround
time for A0 without task relocation, and T2 be the task turnaround time with the task
(re)assignment sequence (Ak)

m−1
k=0 (see Algorithm 2). Then, T2 is less than T1, i.e.,

T2 < T1.

13

Proof. It suffices to show that each task relocation allows each task to reduce its task
execution time for a sequential task assignment in a 2D-HMS. Let ti,x be the task
execution time of task i on cell x in λ-(HMTi,j) before task relocation. After task
relocation, task i is relocated from cell x to its adjacent cell x′ such that N(x′) ≺p N(x),
where N(x′) ≺p N(x) means that an execution rate of node addressed by x′ is higher
than that of node addressed by x. Thus, ti,x′ < ti,x. Since each task reassignment
consists of iterative task relocations by Algorithm 2, we conclude that T2 < T1.

However, when we consider a non-trivial task relocation cost in a consistent 2D-
HMS, the sufficient condition for task i in a priority-based sequential task assignment
to reduce its task turnaround time by means of task relocation from node n to its
adjacent node n′ in Algorithm 2 is that the task relocation cost of task i from node
n to n′ is less than the difference of task execution times caused by task relocation of
task i from node n to n′. Note that a greedy task relocation policy in Algorithm 2
keeps λ-(HMTi,j) from occurring any descent pair for each task reassignment.

Given a priority-based sequential task assignment in a 2D-HMS without any de-
scent pair, we have discussed priority-based task reassignments in a 2D-HMS using
Algorithm 2. We leave it as an open question to apply the priority-based task re-
assignment procedure in a 2D-HMS to other application areas, such as sorting on a
mesh-connected computing environment [32].

5 Conclusions

In this paper we have presented a novel approach to representing priority-based task
reassignments in a heterogeneous 2D mesh-connected system. To the best of our knowl-
edge, this paper is the first attempt to study task assignments and reassignments in a
2D mesh-connected system using tableaux. We have proposed a hierarchical 2D mesh-
connected system (2D-HMS) that is a heterogeneous 2D-MS in a distributed system
with additional priority constraints on nodes. A priority-based task reassignment in a
2D-HMS is represented by a hierarchical 2D mesh tableau λ-(HMTi,j) in which task
relocations under the greedy task relocation policy are reduced to a jeu de taquin slide
on λ-(HMTi,j). Given an initial priority-based task assignment in a 2D-HMS repre-
sented by λ-(HMTi,j), we have shown that our task reassignment procedure does not
generate any locally fragmented node in the 2D-HMS while taking priorities of tasks
and nodes into account.

References

[1] I. Ababneh. An efficient free-list submesh allocation scheme for two-dimensional mesh-connected
multicomputers. The Journal of Systems and Software, 79:1168–1179, 2006.

[2] N. Biggs. Algebraic Graph Theory. Cambridge University Press, Cambridge, UK, 1974.

[3] S.H. Bokhari. Dual Processor Scheduling with Dynamic Reassignment. IEEE Transactions on
Software Engineering, 5:341–349, 1979.

[4] B. Bollobás. Modern Graph Theory. Springer, New York, NY, 1998.

[5] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling in general-purpose distributed computing
systems. IEEE Transactions on Software Engineering, 14:141–154, 1988.

14

[6] U-R. Chen, C-C. Wu, and W. Lin. Meshlization of Irregular Grid Resource Topologies by Heuristic
Square-Packing Methods. International Journal of Grid and Distributed Computing, 2:9–16, 2009.

[7] G-M. Chiu and S-K. Chen. An Efficient Submesh Allocation Scheme for Two-Dimensional Meshes
with Little Overhead. IEEE Transactions on Parallel and Distributed Systems, 10:471–486, 1999.

[8] W.W. Chu, L.J. Holloway, M-T. Lan, and K. Efe. Task Allocation in Distributed Data Processing.
Computer, 13:57–69, 1980.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,
Cambridge, MA, second edition, 2001.

[10] K. Efe. Heuristic models of task assignment scheduling in distributed systems. Computer, 15:50–
56, 1982.

[11] J.B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley, Reading, MA, 1998.

[12] J.S. Frame, G. de B. Robinson, and R.M. Thrall. The hook graphs of the symmetric group.
Canadian Journal of Mathematics, 6:316–324, 1954.

[13] W. Fulton. Young Tableaux: With application to Representation Theory and Geometry. Cambridge
University Press, Cambridge, UK, 1997.

[14] T. Hungerford. Algebra. Springer, New York, NY, 1980.

[15] M. Kafil and I. Ahmad. Optimal Task Assignment in Heterogeneous Distributed Computing
Systems. IEEE Concurrency, 3:42–51, 1998.

[16] D. Kim. Representations of task assignments in distributed systems using young tableaux and
symmetric groups. arXiv.org, arXiv:1012.1288 [cs.DC], 2010.

[17] D.E. Knuth. The art of computer programming. Vol. 3: Sorting and searching. Addison-Wesley
Publishing Company, Reading, MA, 1973.

[18] Y-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys, 31:406–471, 1999.

[19] S-M. Lee. Every Young Tableau Graph Is d-Graceful. Annals of the New York Academy of
Sciences, 555:296–302, 1989.

[20] P. Manneback, E.M. Daoudi, and J. Qin. Optimal Scheduling and Granularity for a 2D-grid
precedence graph on a MIMD computer. In L. Dekker, W. Smit, and J.C. Zuidervaart, editors,
EUROSIM, Massively Parallel Processing Applications and Development, pages 879–886. Elsevier,
Delft, The Netherlands, June 21–23 1994.

[21] S. Ramakrishnan, I-H. Cho, and L.A. Dunning. A Close Look at Task Assignment in Distributed
Systems. In INFOCOM ’91, IEEE, pages 806–812, Bal Harbour, FL, April 7–11 1991.

[22] B.E. Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric
Functions. Springer, New York, NY, second edition, 2001.

[23] M. P. Scützenberger. Quelques remarques sur une construction de Schensted. Math. Scand.,
12:117–128, 1963.

[24] K-H. Seo. Fragmentation-Efficient Node Allocation Algorithm in 2D Mesh-Connected Systems. In
ISPAN ’05: Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms
and Networks, pages 318–323, Las Vegas, NV, December 7–9 2005.

[25] C.C. Shen and W.H. Tsai. A Graph Matching Approach to Optimal Task Assignment in Dis-
tributed Computing System Using a Minimax Criterion. IEEE Transactions on Computers, pages
197–203, 1985.

[26] X. Shen, W. Liang, and Q. Hu. On Embedding Between 2D Meshes of the Same Size. IEEE
Transactions on Computers, 46:880–889, 1997.

[27] Z. Shi, E. Jeannot, and J.J. Dongarra. Robust task scheduling in non-deterministic heterogeneous
computing systems. In Proceedings of IEEE International Conference on Cluster Computing,
pages 1–10, Barcelona, Spain, September 25–28 2006.

[28] O. Sinnen. Task Scheduling for Parallel Systems. Wiley-Interscience, Hoboken, NJ, 2007.

[29] R.P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University Press, Cambridge, UK,
1997.

[30] F. Suter, F. Desprez, and H. Casanova. From Heterogeneous Task Scheduling to Heterogeneous
Mixed Parallel Scheduling. In M. Danelutto, M. Vanneschi, and D. Laforenza, editors, Euro-Par
2004 Parallel Processing, LNCS 3149, pages 230–237. Springer, Pisa, Italy, August 31–September
3 2004.

15

[31] A.S. Tanenbaum. Distributed Operating Systems. Prentice Hall, Upper Saddle River, NJ, 1995.

[32] C.D. Thompson and H.T. Kung. Sorting on a mesh-connected parallel computer. Communications
of the ACM, 20:263–271, 1977.

[33] R. Vessenes. Generalized Foulkes’ Conjecture and tableaux construction. Journal of Algebra,
277:579–614, 2004.

[34] L-L. Wang. Optimal assignment of task modules with precedence for distributed processing by
graph matching and state-space search. BIT, 28:54–68, 1988.

[35] B.S. Yoo and C.R. Das. A Fast and Efficient Processor Allocation Scheme for Mesh-Connected
Multicomputers. IEEE Transactions on Computers, 51:46–60, 2002.

[36] S-M. Yoo, H. Choo, H.Y. Youn, C. Yu, and Y. Lee. On task relocation in two-dimensional meshes.
Journal of Parallel and Distributed Computing, 60:616–638, 2000.

[37] Y. Zhao. Young tableaux and the representations of the symmetric group. The Harvard College
Mathematics Review, 2:33–45, 2008.

16

